A Finite Element Analysis Model for Partial Discharges in Silicone Gel under a High Slew Rate, High-Frequency Square Wave Voltage in Low-Pressure Conditions
Moein Borghei and
Mona Ghassemi
Additional contact information
Moein Borghei: Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Mona Ghassemi: Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
Energies, 2020, vol. 13, issue 9, 1-11
Abstract:
Wide bandgap (WBG) devices made from materials such as SiC, GaN, Ga 2 O 3 and diamond, which can tolerate higher voltages and currents compared to silicon-based devices, are the most promising approach for reducing the size and weight of power management and conversion systems. Silicone gel, which is the existing commercial option for encapsulation of power modules, is susceptible to partial discharges (PDs). PDs often occur in air-filled cavities located in high electric field regions around the sharp edges of metallization in the gel. This study focuses on the modeling of PD phenomenon in an air filled-cavity in silicone gel for the combination of (1) a fast, high-frequency square wave voltage and (2) low-pressure conditions. The low-pressure condition is common in the aviation industry where pressure can go as low as 4 psi. To integrate the pressure impact into PD model, in the first place, the model parameters are adjusted with the experimental results reported in the literature and in the second place, the dependencies of various PD characteristics such as dielectric constant and inception electric field on pressure are examined. Finally, the reflections of these changes in PD intensity, duration and inception time are investigated. The results imply that the low pressure at high altitudes can considerably affect the PD inception and extinction criterion, also the transient state conditions during PD events. These changes result in the prolongation of PD events and more intense ones. As the PD model is strongly dependent upon the accurate estimation electric field estimation of the system, a finite-element analysis (FEA) model developed in COMSOL Multiphysics linked with MATLAB is employed that numerically calculates the electric field distribution.
Keywords: finite-element analysis model; high frequency; high slew rate; low-pressure condition; partial discharge; silicone gel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/9/2152/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/9/2152/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:9:p:2152-:d:352771
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().