EconPapers    
Economics at your fingertips  
 

Weather Data Mixing Models for Day-Ahead PV Forecasting in Small-Scale PV Plants

Shree Krishna Acharya, Young-Min Wi and Jaehee Lee
Additional contact information
Shree Krishna Acharya: Department of Electronics Engineering, Mokpo National University, Muan 58554, Korea
Young-Min Wi: School of Electrical and Electronic Engineering, Gwanju University, Gwangju 61743, Korea
Jaehee Lee: Department of Information and Electronic Engineering, Mokpo National University, Muan 58554, Korea

Energies, 2021, vol. 14, issue 11, 1-16

Abstract: As a large number of small-scale PV plants have been deployed in distribution systems, generation forecasting of such plants has recently been gaining interest. Because the PV power mainly depends on weather conditions, it is important to accurately collect weather data for relevant PV sites to enhance PV forecasting accuracy. However, small-scale PV plants do not often have their own measuring apparatus to get historical weather data, so they have used weather datasets from relatively nearby weather data centers (WDCs). Therefore, these small-scale PV plants have difficulty delivering robust and reliable forecasting accuracy because of inappropriate predicted weather data from a distance. In this paper, two weather data mixing models are proposed: (a) inverse distance weighting (IDW), and (b) inverse correlation weighting (ICW). These models acquire adequate mixed weather data for the day-ahead generation forecasting for small-scale PV plants. Furthermore, the mixed weather data are collected using the geographic distance between the PV site and WDCs, or correlation between the PV generation and weather variables from nearby WDCs. Interestingly, the proposed ICW model outperforms when WDCs are located distant from the PV plants, whereas IDW performs well with the closer WDCs. The forecasting performance of the proposed mixing models was compared with those of the existing weather data collection methods.

Keywords: small-scale PV forecasting; weather data mixing model; similar day detection (SDD); long short-term memory (LSTM) network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/2998/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/2998/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:2998-:d:559858

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2998-:d:559858