EconPapers    
Economics at your fingertips  
 

Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt

Suzan Abdelhady, Mohamed A. Shalaby and Ahmed Shaban
Additional contact information
Suzan Abdelhady: Electrical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 63514, Egypt
Mohamed A. Shalaby: Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Giza 12613, Egypt
Ahmed Shaban: Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 63514, Egypt

Energies, 2021, vol. 14, issue 11, 1-26

Abstract: Extensive studies are conducted to investigate the potential and techno-economic feasibility of bioenergy routes in different countries. However, limited researches have been focused on the whole national agricultural bioenergy resources in Egypt. This research provides an assessment of the potential agricultural biomass resources for electric energy production in Egypt. It provides a strategic perspective for the design of a national network of biomass power plants to utilize the spatially available agricultural residues throughout a country. A comprehensive approach is presented and is applied to Egypt. First, the approach estimates the amount, type, and characteristics of the agricultural residues in each Egyptian governorate. Then, a techno-economic appraisal for locating a set of collection stations, and installing a direct combustion biomass power plant in each governorate is conducted. SAM simulation software is used for the technical and economic appraisals, and preliminary plant capacities are estimated assuming one plant in each governorate. Secondly, a new mixed integer linear programming (MILP) model is proposed and applied to optimally design a biomass supply chain national network to maximize the overall network profit. The network is composed of the collection stations, the potential biomass power plants, and the flow distribution of residues to supply the selected plants. Results indicate that the Egyptian agricultural residue resources can produce 10 million ton/year of dry residues, generate 11 TWh/year, an average levelized cost of electricity ( LCOE ) of 6.77 ¢/kWh, and supply about 5.5% of Egypt’s current energy needs. Moreover, the optimization results reveal that a network of 5 biomass power plants with capacities of 460 MW each should be established in Egypt. This approach is thought to be particularly suitable to other developing countries whose energy demand depends on fossil fuels and poses a heavy economic burden, and whose residues are massive, wasted, and not industrialized. The obtained results may also enrich future comparative research that studies the impact and feasibility of implementing agro-residue based biomass electric energy generation.

Keywords: biomass energy; crop residues; levelized cost of electricity; supply chain; power network; mathematical models; mixed integer linear programming; system advisor model; Egypt (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3063/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3063/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3063-:d:561687

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3063-:d:561687