EconPapers    
Economics at your fingertips  
 

Research of Parameters of a Compression Ignition Engine Using Various Fuel Mixtures of Hydrotreated Vegetable Oil (HVO) and Fatty Acid Esters (FAE)

Oleksandra Shepel, Jonas Matijošius, Alfredas Rimkus, Kamil Duda and Maciej Mikulski
Additional contact information
Oleksandra Shepel: Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania
Jonas Matijošius: Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania
Alfredas Rimkus: Department of Automobile Engineering, Faculty of Transport Engineering, Vilnius Gediminas Technical University, J. Basanavičiaus Str. 28, LT-03224 Vilnius, Lithuania
Kamil Duda: Faculty of Technical Sciences, University of Warmia and Mazury, Oczapowskiego 11, 10-719 Olsztyn, Poland
Maciej Mikulski: School of Technology and Innovation, Energy Technology, University of Vaasa, Wolffintie 34, FI-65200 Vaasa, Finland

Energies, 2021, vol. 14, issue 11, 1-18

Abstract: The present study is aimed at studying the energy and environmental performance at various engine loads ( BMEP ) with identical start of injection (SOI) for all fuel types. The combustion parameters for the fuel mixtures were analyzed using the AVL BOOST software (BURN subroutine). Five different blends were tested, consisting completely of renewable raw materials based on hydrotreated vegetable oil (HVO) and fatty acid methyl ester (FE100), and the properties of diesel fuel (D) were compared with respect to these blends. The mixtures were mixed in the following proportions: FE25 (FE25HVO75), FE50 (FE50HVO50), FE75 (FE75HVO25). In this study, diesel exhaust was found to produce higher NO x values compared to FE blends, with HVO being the lowest. Hydrocarbon and smoke emissions were also significantly lower for blends than for diesel. Possible explanations are the physical properties and fatty acid composition of fuel mixtures, affecting injection and further combustion. The results showed that blends containing more unsaturated fatty acids release more nitrogen oxides, thus having a lower thermal efficiency compared to HVO. No essential differences in CO emissions between D and HVO were observed. An increase in this indicator was observed at low loads for mixtures with ester. CO 2 was reduced in emissions for HVO compared to the aforementioned blends and diesel. The results of the combustion analysis show that with a high content of unsaturated fatty acids, mixtures have a longer combustion time than diesel fuel.

Keywords: diesel engine; fatty acid esters; combustion; performance; emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3077/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3077/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3077-:d:562091

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3077-:d:562091