Scenario Analysis of the Low Emission Energy System in Pakistan Using Integrated Energy Demand-Supply Modeling Approach
Sajid Abrar and
Hooman Farzaneh
Additional contact information
Sajid Abrar: Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
Hooman Farzaneh: Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
Energies, 2021, vol. 14, issue 11, 1-30
Abstract:
Pakistan’s dependence on energy imports, inefficient power generation and distribution, and lack of planned investment have made the country’s economy vulnerable. Low carbon and resilient climate development in Pakistan can help to ensure climate action and reduce the chronic energy deficit ailing the country’s economy, society, and environment. This study focuses on developing and applying an integrated energy supply-demand modeling framework based on a combination of microeconomics and system integration theories, which can be used to address policies that could dramatically change the future course of Pakistan toward a low emission energy system. The methodology involves medium-term forecasting of energy demand using an integration of top-down and bottom-up modeling approaches. The demand-side model is interlinked with a bottom-up technology assessment supply model. The objective of the supply-side model is to identify the optimal combination of resources and technologies, subject to satisfying technical, institutional, environmental, and economic constraints, using the cost minimization approach. The proposed integrated model is applied to enable a complete perspective to achieve overall reductions in energy consumption and generation and better analyze the effects of different scenarios on both energy demand and supply sides in Pakistan. The results revealed that, in the baseline case, the energy demand is expected to increase from 8.70 Mtoe [106.7 TWh] to 24.19 Mtoe [297.2 TWh] with an annual average growth rate of 6.60%. Increasing the share of renewable energy power generation by 2030 can help to reduce emissions by 24%, which is accompanied by a 13% increase in the total cost of power generation.
Keywords: integrated energy system modeling; econometrics; bottom-up technology assessment; low emission development strategies; Pakistan (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3303/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3303/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3303-:d:569023
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().