The Potential Use of Fly Ash from the Pulp and Paper Industry as Thermochemical Energy and CO 2 Storage Material
Saman Setoodeh Jahromy,
Mudassar Azam,
Christian Jordan,
Michael Harasek and
Franz Winter
Additional contact information
Saman Setoodeh Jahromy: Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
Mudassar Azam: Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
Christian Jordan: Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
Michael Harasek: Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
Franz Winter: Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
Energies, 2021, vol. 14, issue 11, 1-21
Abstract:
As a part of our research in the field of thermochemical energy storage, this study aims to investigate the potential of three fly ash samples derived from the fluidized bed reactors of three different pulp and paper plants in Austria for their use as thermochemical energy (TCES) and CO 2 storage materials. The selected samples were analyzed by different physical and chemical analytical techniques such as X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), particle size distribution (PSD), scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectroscopy (ICP-OES), and simultaneous thermal analysis (STA) under different atmospheres (N 2 , CO 2 , and H 2 O/CO 2 ). To evaluate the environmental impact, leaching tests were also performed. The amount of CaO as a promising candidate for TCES was verified by XRF analysis, which was in the range of 25–63% ( w/w ). XRD results indicate that the CaO lies as free lime (3–32%), calcite (21–29%), and silicate in all fly ash samples. The results of STA show that all fly ash samples could fulfill the requirements for TCES (i.e., charging and discharging). A cycling stability test of three cycles was demonstrated for all samples which indicates a reduction of conversion in the first three reaction cycles. The energy content of the examined samples was up to 504 kJ/kg according to the STA results. More energy (~1090 kJ/kg) in the first discharging step in the CO 2 /H 2 O atmosphere could be released through two kinds of fly ash samples due to the already existing free lime (CaO) in those samples. The CO 2 storage capacity of these fly ash samples ranged between 18 and 110 kg per ton of fly ash, based on the direct and dry method. The leaching tests showed that all heavy metals were below the limit values of the Austrian landfill ordinance. It is viable to say that the valorization of fly ash from the pulp and paper industries via TCES and CO 2 storage is plausible. However, further investigations such as cycling stability improvement, system integration and a life cycle assessment (LCA) still need to be conducted.
Keywords: fly ash; thermochemical energy storage; CO 2 storage; pulp and paper industries (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/11/3348/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/11/3348/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:11:p:3348-:d:570325
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().