Model-Based System Performance Analysis of a Solid Oxide Fuel Cell System with Anode Off-Gas Recirculation
Eun-Jung Choi,
Sangseok Yu,
Ji-Min Kim and
Sang-Min Lee
Additional contact information
Eun-Jung Choi: Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
Sangseok Yu: School of Mechanical Engineering, Chungnam University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Ji-Min Kim: School of Mechanical Engineering, Chungnam University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
Sang-Min Lee: Department of Clean Fuel and Power Generation, Korea Institute of Machinery & Materials (KIMM), 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Korea
Energies, 2021, vol. 14, issue 12, 1-22
Abstract:
Designing proper solid oxide fuel cell (SOFC) system configurations is essential for their high efficiency. The present study analyzes the performance improvement of the SOFC system with anode off-gas recirculation (AOGR). Two AOGR configurations are suggested. Depending on the heat flows of off gases, the configurations are called AOGR #1 and #2, respectively. Additionally, a reference system is examined for comparison. This study aims to numerically evaluate the characteristics and performance of each system under various operating conditions such as fuel and air utilization factors. The operating current density and steam to carbon ratio are fixed at 0.3 A/cm 2 and 2.5, respectively. The results indicate that the system performance shows a large difference depending on the system configurations. The SOFC system with AOGR has better performance than the reference system under the operating conditions considered in this paper. However, it is also revealed that depending on the system configuration and operating conditions, AOGR can be effective or ineffective for system performance. Therefore, a deliberate operating strategy for AOGR systems needs to be developed based on the load conditions.
Keywords: SOFC; AOGR; hydrogen recirculation; system performance; power generation system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/12/3607/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/12/3607/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:12:p:3607-:d:576626
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().