Supercritical CO 2 Binary Mixtures for Recompression Brayton s-CO 2 Power Cycles Coupled to Solar Thermal Energy Plants
Paul Tafur-Escanta,
Robert Valencia-Chapi,
Ignacio López-Paniagua,
Luis Coco-Enríquez and
Javier Muñoz-Antón
Additional contact information
Paul Tafur-Escanta: Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
Robert Valencia-Chapi: Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
Ignacio López-Paniagua: Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
Luis Coco-Enríquez: Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
Javier Muñoz-Antón: Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2, 28006 Madrid, Spain
Energies, 2021, vol. 14, issue 13, 1-27
Abstract:
In this work, an evaluation and quantification of the impact of using mixtures based on supercritical carbon dioxide “s-CO 2 ” (s-CO 2 /COS, s-CO 2 /H 2 S, s-CO 2 /NH 3 , s-CO 2 /SO 2 ) are made as a working fluid in simple and complex recompression Brayton s-CO 2 power cycle configurations that have pressure drops in their components. These cycles are coupled with a solar thermal plant with parabolic-trough collector (PTC) technology. The methodology used in the calculation performance is to establish values of the heat recuperator total conductance (UA total ) between 5 and 25 MW/K. The main conclusion of this work is that the cycle’s efficiency has improved due to using s-CO 2 mixtures as working fluid; this is significant compared to the results obtained using the standard fluid (pure s-CO 2 ). Furthermore, a techno-economic analysis is carried out that compares each configuration’s costs using pure s-CO 2 and a mixture of s-CO 2 /COS with a molar fraction (70/30), respectively, as working fluid where relevant results are obtained. These results show that the best configuration in terms of thermal efficiency and cost is the RCC-RH for pure sCO 2 with values of 41.25% and 2811 $/kWe, while for the mixture sCO 2 /COS, the RCC-2RH configuration with values of 45.05% and 2621 $/kWe is optimal. Using the mixture costs 6.75% less than if it is used the standard fluid (s-CO 2 ).
Keywords: recompression Brayton cycle; supercritical carbon dioxide; fluid mixture; solar thermal plant (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/13/4050/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/13/4050/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:13:p:4050-:d:588737
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().