Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel
Juan F. Bárcenas Graniel,
Jassiel V. H. Fontes,
Hector F. Gomez Garcia and
Rodolfo Silva
Additional contact information
Juan F. Bárcenas Graniel: Departamento de Ciencias Básicas e Ingeniería, Universidad del Caribe, SM. 78, Manzana 1, Lote 1, Esq. Fraccionamiento Tabachines, Cancun 77528, Mexico
Jassiel V. H. Fontes: Departamento de Engenharia Naval, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Av. Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69050-020, Brazil
Hector F. Gomez Garcia: Departamento de Ciencias Básicas e Ingeniería, Universidad del Caribe, SM. 78, Manzana 1, Lote 1, Esq. Fraccionamiento Tabachines, Cancun 77528, Mexico
Rodolfo Silva: Coordinación de Hidráulica, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Mexico City 04510, Mexico
Energies, 2021, vol. 14, issue 15, 1-23
Abstract:
This paper presents a techno-economic assessment of hydrokinetic energy of Cozumel Island, where ocean currents have been detected, but tourist activities are paramount. The main objective of this research is to identify devices that have been used to harvest hydrokinetic power elsewhere and perform an economic analysis as to their implementation in the Mexican Caribbean. First, the energy potential of the area was evaluated using simulated data available through the HYCOM consortium. Then, for four pre-commercial and commercial turbines, technical and economic analyses of their deployments were performed. Socio-environmental constraints were reviewed and discussed. Three optimal sites were identified, with an average annual hydrokinetic energy density of 3–6 MWh/m 2 -year. These sites meet the socio-environmental requirements for marine kinetic energy harvesting. Of the turbines considered in the analysis, the best energy price/cost ratio is that of SeaGen device, with a maximum theoretical energy extraction of 1319 MWh/year with a Capacity Factor of 12.5% and a Levelised Cost of Energy (LCOE) of 1148 USD/MWh. Using this device, but assuming a site-specific design that achieves at least 25% of Capacity Factor, 20-year useful life, and a discount rate of 0.125, the LCOE would be 685.6 USD/MWh. The approach presented here can be applied for techno-economic analyses of marine turbines in other regions.
Keywords: ocean current energy; marine turbines; techno-economic analysis; environmental constraints; cozumel; developing regions; cost of renewable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/15/4411/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/15/4411/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:15:p:4411-:d:598859
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().