Comprehensive Review on Fuel Cell Technology for Stationary Applications as Sustainable and Efficient Poly-Generation Energy Systems
Viviana Cigolotti,
Matteo Genovese and
Petronilla Fragiacomo
Additional contact information
Viviana Cigolotti: Laboratory for Energy Storage, Batteries and Hydrogen Production and Utilization Technologies, Department of Energy Technologies and Renewable Sources, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Research Centre of Portici, 80055 Naples, Italy
Matteo Genovese: Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
Petronilla Fragiacomo: Department of Mechanical, Energy and Management Engineering, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy
Energies, 2021, vol. 14, issue 16, 1-28
Abstract:
Fuel cell technologies have several applications in stationary power production, such as units for primary power generation, grid stabilization, systems adopted to generate backup power, and combined-heat-and-power configurations (CHP). The main sectors where stationary fuel cells have been employed are (a) micro-CHP, (b) large stationary applications, (c) UPS, and IPS. The fuel cell size for stationary applications is strongly related to the power needed from the load. Since this sector ranges from simple backup systems to large facilities, the stationary fuel cell market includes few kWs and less (micro-generation) to larger sizes of MWs. The design parameters for the stationary fuel cell system differ for fuel cell technology (PEM, AFC, PAFC, MCFC, and SOFC), as well as the fuel type and supply. This paper aims to present a comprehensive review of two main trends of research on fuel-cell-based poly-generation systems: tracking the market trends and performance analysis. In deeper detail, the present review will list a potential breakdown of the current costs of PEM/SOFC production for building applications over a range of production scales and at representative specifications, as well as broken down by component/material. Inherent to the technical performance, a concise estimation of FC system durability, efficiency, production, maintenance, and capital cost will be presented.
Keywords: fuel cell; market trends; energy performance; durability and cost breakdown; worldwide installations (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/16/4963/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/16/4963/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:16:p:4963-:d:613976
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().