A Framework and Baseline for the Integration of a Sustainable Circular Economy in Offshore Wind
Anne P. M. Velenturf
Additional contact information
Anne P. M. Velenturf: School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK
Energies, 2021, vol. 14, issue 17, 1-41
Abstract:
Circular economy and renewable energy infrastructure such as offshore wind farms are often assumed to be developed in synergy as part of sustainable transitions. Offshore wind is among the preferred technologies for low-carbon energy. Deployment is forecast to accelerate over ten times faster than onshore wind between 2021 and 2025, while the first generation of offshore wind turbines is about to be decommissioned. However, the growing scale of offshore wind brings new sustainability challenges. Many of the challenges are circular economy-related, such as increasing resource exploitation and competition and underdeveloped end-of-use solutions for decommissioned components and materials. However, circular economy is not yet commonly and systematically applied to offshore wind. Circular economy is a whole system approach aiming to make better use of products, components and materials throughout their consecutive lifecycles. The purpose of this study is to enable the integration of a sustainable circular economy into the design, development, operation and end-of-use management of offshore wind infrastructure. This will require a holistic overview of potential circular economy strategies that apply to offshore wind, because focus on no, or a subset of, circular solutions would open the sector to the risk of unintended consequences, such as replacing carbon impacts with water pollution, and short-term private cost savings with long-term bills for taxpayers. This study starts with a systematic review of circular economy and wind literature as a basis for the coproduction of a framework to embed a sustainable circular economy throughout the lifecycle of offshore wind energy infrastructure, resulting in eighteen strategies: design for circular economy, data and information, recertification, dematerialisation, waste prevention, modularisation, maintenance and repair, reuse and repurpose, refurbish and remanufacturing, lifetime extension, repowering, decommissioning, site recovery, disassembly, recycling, energy recovery, landfill and re-mining. An initial baseline review for each strategy is included. The application and transferability of the framework to other energy sectors, such as oil and gas and onshore wind, are discussed. This article concludes with an agenda for research and innovation and actions to take by industry and government.
Keywords: circular economy; resource and waste management; resource efficiency; wind energy; sustainable development; low-carbon infrastructure; renewable energy; energy transition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/17/5540/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/17/5540/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:17:p:5540-:d:629338
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().