Microalgal Hydrogen Production in Relation to Other Biomass-Based Technologies—A Review
Marcin Dębowski,
Magda Dudek,
Marcin Zieliński,
Anna Nowicka and
Joanna Kazimierowicz
Additional contact information
Marcin Dębowski: Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
Magda Dudek: Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
Marcin Zieliński: Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
Anna Nowicka: Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
Joanna Kazimierowicz: Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
Energies, 2021, vol. 14, issue 19, 1-27
Abstract:
Hydrogen is an environmentally friendly biofuel which, if widely used, could reduce atmospheric carbon dioxide emissions. The main barrier to the widespread use of hydrogen for power generation is the lack of technologically feasible and—more importantly—cost-effective methods of production and storage. So far, hydrogen has been produced using thermochemical methods (such as gasification, pyrolysis or water electrolysis) and biological methods (most of which involve anaerobic digestion and photofermentation), with conventional fuels, waste or dedicated crop biomass used as a feedstock. Microalgae possess very high photosynthetic efficiency, can rapidly build biomass, and possess other beneficial properties, which is why they are considered to be one of the strongest contenders among biohydrogen production technologies. This review gives an account of present knowledge on microalgal hydrogen production and compares it with the other available biofuel production technologies.
Keywords: hydrogen; biofuels; microalgae; fermentation; thermochemical methods (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6025/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6025/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6025-:d:640644
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().