Life Cycle Assessment for Supporting Dimensioning Battery Storage Systems in Micro-Grids for Residential Applications
Maria M. Symeonidou,
Effrosyni Giama and
Agis M. Papadopoulos
Additional contact information
Maria M. Symeonidou: Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University, 54124 Thessaloniki, Greece
Effrosyni Giama: Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University, 54124 Thessaloniki, Greece
Agis M. Papadopoulos: Process Equipment Design Laboratory, Department of Mechanical Engineering, Aristotle University, 54124 Thessaloniki, Greece
Energies, 2021, vol. 14, issue 19, 1-16
Abstract:
The current EU energy and climate policy targets a significant reduction of carbon dioxide emissions in the forthcoming years. Carbon pricing, embedded in the EU emissions trading system, aims at achieving emission reductions in a more evenly spread way and at the lowest overall cost for society, compared with other environmental policy tools, such as coal or electricity taxes, or incentives such as subsidies on renewables. Still, the implementation of the decarbonization policy depends on several technical parameters such as the type, size and connectivity of the energy system as well as economic restrictions that occur. Within this paper, an optimization tool will be presented, focusing on cleaner energy production and on the control and reduction of environmental impact regarding energy storage solutions. Various types of batteries are examined and evaluated towards this direction. Emphasis is given to setting new criteria for the decision-making process, considering the size of battery storage and the selection of the battery type based on the environmental impact assessment parameter. The objective function of the system is formulated so as to evaluate, monitor and finally minimize environmental emissions, focusing mainly on carbon emissions. Optimization is carried out based on mixed integer nonlinear programming (MINLP). Two of the main battery types compared are lead–acid and lithium-ion; both of them result in results worth mentioning regarding the replacement impact (seven times during system lifetime for lead–acid) and the total environmental impact comparison (lithium-ion may reach a 60% reduction compared to lead–acid). Case studies are presented based on representative scenarios solved, which underline the importance of choosing the appropriate scope for each case and demonstrate the potential of the tool developed, as well as the possibilities for its further improvement.
Keywords: energy storage; batteries; carbon emissions; environmental decision making; battery materials (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6189/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6189/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6189-:d:645233
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().