EconPapers    
Economics at your fingertips  
 

Electromagnetic–Triboelectric Hybridized Nanogenerators

Lin Xu, Md Al Mahadi Hasan, Heting Wu and Ya Yang
Additional contact information
Lin Xu: Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Md Al Mahadi Hasan: CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
Heting Wu: CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
Ya Yang: Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China

Energies, 2021, vol. 14, issue 19, 1-27

Abstract: Since the triboelectric nanogenerator (TENG) was invented, it has received extensive attention from researchers. Among the many pieces of research based on TENG, the research of hybridized generators is progressing rapidly. In recent years, the research and application of the electromagnetic–triboelectric hybridized nanogenerator (EMG-TENG) have made great progress. This review mainly focuses on the latest research development of EMG-TENG and elaborates on the principles, materials, structure, and applications of EMG-TENG. In this paper, the microscopic charge transfer mechanism of TENG is explained by the most primitive friction electrification phenomenon and electrostatic induction phenomenon. The commonly used materials for fabricating TENG and the selection and modification methods of the materials are introduced. According to the difference in structure, EMG-TENG is divided into two categories: vibratory EMG-TENG and rotating EMG-TENG. The summary explains the application of EMG-TENG, including the energy supply and self-powered system of small electronic devices, EMG-TENG as a sensor, and EMG-TENG in wearable devices. Finally, based on summarizing previous studies, the author puts forward new views on the development direction of EMG-TENG.

Keywords: energy harvesting; electromagnetic generator; triboelectric nanogenerator; hybridized nanogenerator; sensor; wearable devices (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6219/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6219/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6219-:d:646072

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6219-:d:646072