Hybrid Ejector-Absorption Refrigeration Systems: A Review
Hamza K. Mukhtar and
Saud Ghani
Additional contact information
Hamza K. Mukhtar: Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
Saud Ghani: Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
Energies, 2021, vol. 14, issue 20, 1-31
Abstract:
Absorption Refrigeration Systems (ARS) are potential alternatives to direct expansion (DX) refrigeration systems. This review focused on the incorporation of an ejector into absorption refrigeration cycles to constitute Hybrid Ejector-Absorption Refrigeration Systems (HEARS). The ejector adds several advantages to the absorption refrigeration systems depending on its location in the cycle. The two prevalent configurations of HEARS are Triple pressure level (TPL-HEARS), and Low Pressure Condenser (LPC-HEARS). Previous studies revealed the preference of the latter configuration as it allows lower circulation ratios, enhances the refrigeration effect, and could achieve a COP up to 1. Moreover, LPC configuration is suitable with single, double, and variable-effect absorption systems with a COP of above unity. In turn, the TPL-HEARS notably enhances the absorption process, particularly when a variable geometry ejector is utilized. This configuration could obtain a COP around 1.1, but only with high-density refrigerant vapor. Lately, to attain the advantages of both configurations, some studies investigated the viability of adding two ejectors to the cycle. This paper meticulously reviews investigations conducted on the emerging dual ejectors-absorption refrigeration technology. This paper reveals the general performance trend and the maximum attainable COP by each type of hybrid ejector-absorption refrigeration system. DEARS and Ejector-driven absorption refrigeration systems (ED-ARS) could achieve COP that ranges between 1.2 and 1.46. The use of a flash tank and a RHE is essential in NH 3 /H 2 O HEARS. At high generator temperatures (of 120–170 °C), DEARS was found to be the system with less complexity and best performance. Nevertheless, the performance of the DEARS might drop significantly if the heat source temperature is fluctuating. Thence, the variable-effect HEARS is considered the best alternative. The capability of HEARS to be integrated with different power generation cycles is also highlighted. Finally, the review presents possible future research opportunities to improve the absorption refrigeration technology.
Keywords: absorption refrigeration; cooling system; hybrid refrigeration system; combined ejector absorption system; dual ejectors (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/20/6576/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/20/6576/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:20:p:6576-:d:654907
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().