EconPapers    
Economics at your fingertips  
 

Destabilization of Boron-Based Compounds for Hydrogen Storage in the Solid-State: Recent Advances

Carlos A. Castilla-Martinez, Romain Moury, Salem Ould-Amara and Umit B. Demirci
Additional contact information
Carlos A. Castilla-Martinez: Laboratoire des Fluides Complexes et leurs Réservoirs, UMR 5150, Université de Pau et des Pays de l’Adour, E2S UPPA, CNRS, 64600 Anglet, France
Romain Moury: Institut des Molécules et Matériaux du Mans (IMMM), UMR 6283, Le Mans Université, CNRS Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France
Salem Ould-Amara: Laboratoire Analyse, Modélisation, Matériaux pour la Biologie et l’Environment, LAMBE—UMR 8587, Université D’Evry Val d’Essonne, CNRS, 91025 Evry, France
Umit B. Demirci: Institut Européen des Membranes, IEM—UMR 5635, Université de Montpellier, ENSCM, CNRS, 34095 Montpellier, France

Energies, 2021, vol. 14, issue 21, 1-50

Abstract: Boron-based materials have been widely studied for hydrogen storage applications. Examples of these compounds are borohydrides and boranes. However, all of these present some disadvantages that have hindered their potential application as hydrogen storage materials in the solid-state. Thus, different strategies have been developed to improve the dehydrogenation properties of these materials. The purpose of this review is to provide an overview of recent advances (for the period 2015–2021) in the destabilization strategies that have been considered for selected boron-based compounds. With this aim, we selected seven of the most investigated boron-based compounds for hydrogen storage applications: lithium borohydride, sodium borohydride, magnesium borohydride, calcium borohydride, ammonia borane, hydrazine borane and hydrazine bisborane. The destabilization strategies include the use of additives, the chemical modification and the nanosizing of these compounds. These approaches were analyzed for each one of the selected boron-based compounds and these are discussed in the present review.

Keywords: borohydride; borane; hydrogen storage; destabilization; thermolysis; hydrogen carrier; boron (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7003/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7003/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7003-:d:664755

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7003-:d:664755