EconPapers    
Economics at your fingertips  
 

Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting

Yiqing Dai, Yan Yin and Yundi Lu
Additional contact information
Yiqing Dai: College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
Yan Yin: Department of Publicity, Ding Huai Men Campus, Jiangsu Open University, Nanjing 210036, China
Yundi Lu: School of Physics and Technology, Wuhan University, Wuhan 430072, China

Energies, 2021, vol. 14, issue 21, 1-14

Abstract: Photovoltaic (PV) facilities are sustainable and promising approaches for energy harvesting, but their applications usually require adequate spaces. Road structures account for a considerable proportion of urban and suburban areas and may be feasible for incorporation with photovoltaic facilities, and thereby have attracted research interests. One solution for such applications is to take advantage of the spare ground in road facilities without traffic load, where the solar panels are mounted as their conventional applications. Such practices have been applied in medians and slopes of roads and open spaces in interchanges. Applications in accessory buildings and facilities including noise/wind barriers, parking lots, and lightings have also been reported. More efforts in existing researches have been paid to PV applications in load-bearing pavement structures, possibly because the pavement structures cover the major area of road structures. Current strategies are encapsulating PV cells by transparent coverings to different substrates to prefabricate modular PV panels in factories for onsite installation. Test road sections with such modular solar panels have been reported, where inferior cost-effectiveness and difficulties in maintenance have been evidenced, suggesting more challenges exist than expected. In order to enhance the power output of the integrated PV facilities, experiences from building-integrated PVs may be helpful, including a selection of proper PV technologies, an optimized inclination of PV panels, and mitigating the operational temperature of PV cells. Novel integrations of amorphous silicon PV cells and glass fiber reinforced polymer profiles are proposed in this research for multi-scenario applications, and their mechanical robustness was evaluated by bending experiments.

Keywords: photovoltaics; solar panel; energy harvesting; highway; urban street; experimental investigation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7097/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7097/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7097-:d:669181

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7097-:d:669181