Fault Detection in PV Tracking Systems Using an Image Processing Algorithm Based on PCA
Tito G. Amaral,
Vitor Fernão Pires and
Armando J. Pires
Additional contact information
Tito G. Amaral: SustainRD, EST Setubal, Polytechnic Institute of Setúbal, 2914-508 Setúbal, Portugal
Vitor Fernão Pires: SustainRD, EST Setubal, Polytechnic Institute of Setúbal, 2914-508 Setúbal, Portugal
Armando J. Pires: SustainRD, EST Setubal, Polytechnic Institute of Setúbal, 2914-508 Setúbal, Portugal
Energies, 2021, vol. 14, issue 21, 1-18
Abstract:
Photovoltaic power plants nowadays play an important role in the context of energy generation based on renewable sources. With the purpose of obtaining maximum efficiency, the PV modules of these power plants are installed in trackers. However, the mobile structure of the trackers is subject to faults, which can compromise the desired perpendicular position between the PV modules and the brightest point in the sky. So, the diagnosis of a fault in the trackers is fundamental to ensure the maximum energy production. Approaches based on sensors and statistical methods have been researched but they are expensive and time consuming. To overcome these problems, a new method is proposed for the fault diagnosis in the trackers of the PV systems based on a machine learning approach. In this type of approach the developed method can be classified into two major categories: supervised and unsupervised. In accordance with this, to implement the desired fault diagnosis, an unsupervised method based on a new image processing algorithm to determine the PV slopes is proposed. The fault detection is obtained comparing the slopes of several modules. This algorithm is based on a new image processing approach in which principal component analysis (PCA) is used. Instead of using the PCA to reduce the data dimension, as is usual, it is proposed to use it to determine the slope of an object. The use of the proposed approach presents several benefits, namely, avoiding the use of a wide range of data and specific sensors, fast detection and reliability even with incomplete images due to reflections and other problems. Based on this algorithm, a deviation index is also proposed that will be used to discriminate the panel(s) under fault. Several test cases are used to test and validate the proposed approach. From the obtained results, it is possible to verify that the PCA can successfully be adapted and used in image processing algorithms to determine the slope of the PV modules and so effectively detect a fault in the tracker, even when there are incomplete parts of an object in the image.
Keywords: tracking system; two-axis; photovoltaic systems (pv); fault detection; principal component analysis (PCA); image processing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7278/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7278/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7278-:d:671487
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().