EconPapers    
Economics at your fingertips  
 

A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning

Xiaoming Xie, Meiping Li and Du Zhang
Additional contact information
Xiaoming Xie: Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China
Meiping Li: Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China
Du Zhang: Faculty of Information Technology, Macau University of Science and Technology, Macau 999078, China

Energies, 2021, vol. 14, issue 21, 1-14

Abstract: The price of electricity is an important factor in the electricity market. Accurate electricity price forecasting (EPF) is very important to all competing electricity market parties. Decision-making in the electricity market is highly dependent on electricity prices, making an EPF model an important part of the orderly and efficient operation of the electricity market. Especially during the COVID-19 pandemic, the prices of raw materials for electricity production, such as coal, have risen sharply. Forecasting electricity prices has become particularly important. Currently, existing EPF prediction models face two main challenges: First, how to integrate multiscale electricity price data to obtain a higher prediction accuracy. Second, how to solve the problem of data noise caused by the fusion of EPF samples and multiscale data. To solve the above problems, we innovatively propose a tensor decomposition method to integrate multiscale electricity price data and use L 1 regularization and wavelet transform to remove data noise. In general, this paper proposes a deep learning EPF prediction model, named the WT_TDLSTM model, based on tensor decomposition, a wavelet transform, and long short-term memory (LSTM). Among them, the LSTM method is used to predict electricity prices. We conducted experiments on three datasets. The experimental results of three data prove that the WT_TDLSTM model is better than the compared EPF model. The indicators of MSE and RMSE are 33.65–99.97% better than the comparison model. We believe that the WT_TDLSTM model is a good supplement to the EPF model.

Keywords: electricity price forecasting (EPF); wavelet transform; tensor fusion; long short-term memory (LSTM) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7333/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7333/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7333-:d:672212

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7333-:d:672212