Balancing Energy Trilemma Using Hybrid Distributed Rooftop Solar PV (DRSP)/Battery/Diesel Microgrid: A Case Study in Gilutongan Island, Cordova, Cebu, Philippines
Jaybee Lacea,
Edward Querikiol and
Evelyn Taboada
Additional contact information
Jaybee Lacea: Center for Research in Energy Systems and Technologies and Engineering Graduate Program, University of San Carlos, Cebu City 6000, Philippines
Edward Querikiol: Center for Research in Energy Systems and Technologies and Engineering Graduate Program, University of San Carlos, Cebu City 6000, Philippines
Evelyn Taboada: Center for Research in Energy Systems and Technologies and Engineering Graduate Program, University of San Carlos, Cebu City 6000, Philippines
Energies, 2021, vol. 14, issue 21, 1-32
Abstract:
Design strategies for achieving reliable, affordable, and clean electricity are crucial for energy sustainability. Attaining it requires managing the three core factors (TCF) of the energy trilemma (ET) to increase reliability (energy equity), minimize the levelized cost of electricity (LCOE) (energy equity), and avoid potential CO 2 emission (environmental sustainability) simultaneously. This paper aims to present a design strategy for the hybrid energy system microgrid (HESM) model, consisting of a distributed rooftop solar PV (DRSP), battery, and diesel-generator to meet the increasing demand while balancing the TCF of the ET. The design strategy was applied in a cluster of 11 households in Gilutongan Island, Cebu, Philippines, where there is no open land space for a solar PV microgrid system. This study used PVSyst and HOMER Pro software to perform the techno-enviro-economic (TEE) analysis to select all feasible system configurations (FSCs). To identify the optimal FSC, a scoring mechanism that considers the LCOE based on the 5% household electricity expense limit, the 5% unmet load fraction, and the renewable penetration fraction was used. Results show that the optimal system requires an average of 32.2% excess energy from DRSP to balance the TCF of the ET based on the energy demand considered. Thus, planning when energy demand increases is vital to map the next appropriate steps toward sustainable energy transition. Overall, the obtained results can support project developers and policymakers to make informed decisions in balancing the ET from various trade-offs of energy systems.
Keywords: energy sustainability; rural electrification; energy trilemma; trade-offs; off-grid microgrids; renewable energy; energy transition; energy system optimization; HOMER; PVSyst (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7358/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7358/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7358-:d:672558
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().