Waste-Based Intermediate Bioenergy Carriers: Syngas Production via Coupling Slow Pyrolysis with Gasification under a Circular Economy Model
Danai Frantzi and
Anastasia Zabaniotou
Additional contact information
Danai Frantzi: Department of Chemical Engineering, Engineering School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Anastasia Zabaniotou: Department of Chemical Engineering, Engineering School, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
Energies, 2021, vol. 14, issue 21, 1-37
Abstract:
Waste-based feedstocks and bioenergy intermediate carriers are key issues of the whole bioenergy value chain. Towards a circular economy, changing upcycling infra-structure systems takes time, while energy-from-waste (EfW) technologies like waste pyrolysis and gasification could play an integral part. Thus, the aim of this study is to propose a circular economy pathway for the waste to energy (WtE) thermochemical technologies, through which solid biomass waste can be slowly pyrolyzed to biochar (main product), in various regionally distributed small plants, and the pyro-oils, by-products of those plants could be used as an intermediate energy carrier to fuel a central gasification plant for syngas production. Through the performed review, the main parameters of the whole process chain, from waste to syngas, were discussed. The study develops a conceptual model that can be implemented for overcoming barriers to the broad deployment of WtE solutions. The proposed model of WtE facilities is changing the recycling economy into a circular economy, where nothing is wasted, while a carbon-negative energy carrier can be achieved. The downstream side of the process (cleaning of syngas) and the economic feasibility of the dual such system need optimization.
Keywords: bioenergy intermediate carriers; circular economy; slow pyrolysis; biooil gasification; syngas; waste (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7366/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7366/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7366-:d:672769
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().