Energy Savings Resulting from Using a Near-Surface Earth-to-Air Heat Exchanger for Precooling in Hot Desert Climates
Ali Pakari and
Saud Ghani
Additional contact information
Ali Pakari: Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
Saud Ghani: Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
Energies, 2021, vol. 14, issue 23, 1-14
Abstract:
Given the substantial energy use for space cooling in buildings, integrating energy-efficient and sustainable cooling systems into buildings has become increasingly more important. Even though the cooling potential of a near-surface earth-to-air heat exchanger (EAHE) with grass cover was demonstrated in previous studies, the energy savings and environmental benefits resulting from using the EAHE have not yet been quantified. Therefore, in this study, we quantify the energy savings resulting from using a near-surface earth-to-air heat exchanger (EAHE) with grass-covered ground as a precooling unit in hot desert climates. The outlet air conditions of the EAHE during 9 months of the year (March to November), where space cooling is required, are predicted using a 3D transient CFD model, which is validated against field measurements. The EAHE is fabricated from a 1 mm thick aluminum tube with a diameter of 0.15 m and a length of 21.5 m, buried 0.4 m deep. The results showed that the EAHE can cool ambient air by up to 8.5 °C at an air flow rate of 607 m 3 /h, corresponding to a cooling capacity of 1700 W and a COP of 17. The daily average cooling capacity of the EAHE is about 560 W for an average operation period of 15.1 h per day. When used as a precooling unit for conventional cooling systems, the highest estimated monthly energy savings is 115 kWh, and the estimated annual savings is 741 kWh.
Keywords: energy savings; electricity savings; precooling; ground cooling; computational fluid dynamics (CFD); transient simulations (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/23/8044/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/23/8044/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:23:p:8044-:d:693018
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().