Thermal Fluxes and Solar Energy Storage in a Massive Brick Wall in Natural Conditions
Mariusz Owczarek
Additional contact information
Mariusz Owczarek: Faculty of Civil Engineering and Geodesy, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland
Energies, 2021, vol. 14, issue 23, 1-17
Abstract:
The thermal state of building elements is a combination of steady and transient states. Changes in temperature and energy streams in the wall of the building in the transient state are particularly intense in its outer layer. The factors causing them are solar radiation, ambient temperature and long-wave radiation. Due to the greater variability of these factors during the summer, the importance of the transient state increases at this time. The study analysed heat transfer in three aspects, temperatures in the outer, middle and inner parts of the wall, heat fluxes between these layers and absorption of solar energy, heat transfer coefficient on the wall exterior was also calculated. The analysis is based on temperature measurements at several depths in the wall and measurements of solar radiation. The subject of research is a solid brick wall. The results show that the characteristics of heat flow in winter and summer for the local climate show distinct differences. In the winter, the maximum temperature difference between the external and internal surface of the wall was 10 °C and in summer, 20 °C. In the winter, the negative flux on the internal surface reached 10 W/m 2 and on the external 40 W/m 2 and was constant throughout the day. The mean heat transfer coefficient on the exterior surface for winter week was 8 W/(mK). A Nusselt and Biot number for dimensionless convection analysis was calculated. The research contributes to the calculation of the variability of heat or cold demand in a daily period and to learn about the processes of energy storage in the wall using sensible heat.
Keywords: heat transfer by conduction; energy storage in wall; transient heat transfer; building envelope (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/23/8093/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/23/8093/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:23:p:8093-:d:694273
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().