EconPapers    
Economics at your fingertips  
 

Techno-Economic Analysis of Utility-Scale Solar Photovoltaic Plus Battery Power Plant

Nawaz Edoo and Robert T. F. Ah King
Additional contact information
Nawaz Edoo: Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
Robert T. F. Ah King: Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius

Energies, 2021, vol. 14, issue 23, 1-22

Abstract: Decarbonizing the global power sector is a key requirement to fight climate change. Consequently, the deployment of renewable energy (RE) technologies, notably solar photovoltaic (PV), is proceeding rapidly in many regions. However, in many of these regions, the evening peak is predominantly being served by fossil-fired generators. Furthermore, as the evening peak is projected to increase in the coming years, there are plans to install more fossil-fired peaking generators. A cleaner alternative is to enable solar PV plants to provide clean power after sunset by pairing them with large-scale lithium-ion batteries to provide evening peak generation. In this work, we performed a techno-economic analysis of a solar PV plus battery (PVB) power plant using the island of Mauritius as a case study. We assessed the impacts of the battery size, inverter loading ratio (ILR), tracking type, and curtailment on the levelized cost of electricity (LCOE). The main results show that the LCOE of utility-scale PVB systems are comparable to that of fossil-fired peaking generators for this case study. Tracking was shown to exacerbate the clipping loss problem and its benefits on LCOE reduction decrease as the ILR increases. The availability of the PVB system to serve the evening peak was found to be high. The curtailment analysis also showed that planners must not rely solely on storage, but rather should also improve grid flexibility to keep PVB integration affordable. Overall, the practical insights generated will be useful to utility planners in charting their generation expansion strategy.

Keywords: lithium-ion battery; LCOE; renewable energy; solar photovoltaics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/23/8145/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/23/8145/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:23:p:8145-:d:695381

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8145-:d:695381