EconPapers    
Economics at your fingertips  
 

Applications of 2D MXenes for Electrochemical Energy Conversion and Storage

Chenchen Ji, Haonan Cui, Hongyu Mi and Shengchun Yang
Additional contact information
Chenchen Ji: School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
Haonan Cui: School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
Hongyu Mi: School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
Shengchun Yang: MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China

Energies, 2021, vol. 14, issue 23, 1-23

Abstract: As newly emerged 2D layered transition metal carbides or carbonitrides, MXenes have attracted growing attention in energy conversion and storage applications due to their exceptional high electronic conductivity, ample functional groups (e.g., -OH, -F, -O), desirable hydrophilicity, and superior dispersibility in aqueous solutions. The significant advantages of MXenes enable them to be intriguing structural units to engineer advanced MXene-based nanocomposites for electrochemical storage devices with remarkable performances. Herein, this review summarizes the current advances of MXene-based materials for energy storage (e.g., supercapacitors, lithium ion batteries, and zinc ion storage devices), in which the fabrication routes and the special functions of MXenes for electrode materials, conductive matrix, surface modification, heteroatom doping, crumpling, and protective layer to prevent dendrite growth are highlighted. Additionally, given that MXene are versatile for self-assembling into specific configuration with geometric flexibility, great efforts about methodologies (e.g., vacuum filtration, mask-assisted filtration, screen printing, extrusion printing technique, and directly writing) of patterned MXene-based composite film or MXene-based conductive ink for fabricating more types of energy storage device were also discussed. Finally, the existing challenges and prospects of MXene-based materials and growing trend for further energy storage devices are also presented.

Keywords: MXenes; energy conversion and storage; flexibility device methodologies (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/23/8183/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/23/8183/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:23:p:8183-:d:696074

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8183-:d:696074