A Review of Recent Advances in Emerging Alternative Heating and Cooling Technologies
Mubarak Ismail,
Metkel Yebiyo and
Issa Chaer
Additional contact information
Mubarak Ismail: School of the Built Environment and Architecture, London South Bank University, London SE1 0AA, UK
Metkel Yebiyo: School of the Built Environment and Architecture, London South Bank University, London SE1 0AA, UK
Issa Chaer: School of the Built Environment and Architecture, London South Bank University, London SE1 0AA, UK
Energies, 2021, vol. 14, issue 2, 1-24
Abstract:
The heating and cooling industry underpins everything we do, e.g., manufacturing, commercial and residential applications. Many of these applications invariably use mechanical refrigeration technologies, consequently contributing significantly to the environmental impacts of the refrigeration, air conditioning, and heat pump (RACHP) industry both through direct and indirect emissions of CO 2 . To reduce these emissions, research and development worldwide aim to improve the performance of conventional systems and the development of new refrigeration technologies of potentially much lower environmental impacts. As we transition to a low carbon economy, there are sizable environmental and economic benefits from developing and using efficient, innovative, low carbon heating and cooling technologies that reduce energy use and carbon emissions. This paper provides an up-to-date and comprehensive critical review and evaluation of recent advances in emerging alternative heating and cooling technologies that have the potential to reduce the environmental impacts of refrigeration in the RACHP sector. The paper highlights the basic working principle of operation, its main applications, the challenges and opportunities in penetrating the market. The paper also highlights further research and development needed to accelerate the development and adoption of these alternative refrigeration technologies by the sector. Most of the technologies reviewed have a Technology Readiness Level (TRL) of 3–4, except electrocaloric technology which is less ready compared to its counterparts with a TRL of 1–2 at this stage. Furthermore, most technologies have capacities ranging between a few kilowatts to a maximum of 7 kW with a coefficient of performance COP between 1 and 10 reported in the literature.
Keywords: alternative refrigeration; electrocaloric; magnetic; thermoelectric; thermoacoustic; stirling; barocaloric; elastocaloric; emerging refrigeration technologies (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/2/502/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/2/502/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:2:p:502-:d:482750
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().