EconPapers    
Economics at your fingertips  
 

Progress in Material Development for Low-Temperature Solid Oxide Fuel Cells: A Review

Mohsen Fallah Vostakola and Bahman Amini Horri
Additional contact information
Mohsen Fallah Vostakola: School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, 16846-13114 Tehran, Iran
Bahman Amini Horri: Department of Chemical and Process Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK

Energies, 2021, vol. 14, issue 5, 1-53

Abstract: Solid oxide fuel cells (SOFCs) have been considered as promising candidates to tackle the need for sustainable and efficient energy conversion devices. However, the current operating temperature of SOFCs poses critical challenges relating to the costs of fabrication and materials selection. To overcome these issues, many attempts have been made by the SOFC research and manufacturing communities for lowering the operating temperature to intermediate ranges (600–800 °C) and even lower temperatures (below 600 °C). Despite the interesting success and technical advantages obtained with the low-temperature SOFC, on the other hand, the cell operation at low temperature could noticeably increase the electrolyte ohmic loss and the polarization losses of the electrode that cause a decrease in the overall cell performance and energy conversion efficiency. In addition, the electrolyte ionic conductivity exponentially decreases with a decrease in operating temperature based on the Arrhenius conduction equation for semiconductors. To address these challenges, a variety of materials and fabrication methods have been developed in the past few years which are the subject of this critical review. Therefore, this paper focuses on the recent advances in the development of new low-temperature SOFCs materials, especially low-temperature electrolytes and electrodes with improved electrochemical properties, as well as summarizing the matching current collectors and sealants for the low-temperature region. Different strategies for improving the cell efficiency, the impact of operating variables on the performance of SOFCs, and the available choice of stack designs, as well as the costing factors, operational limits, and performance prospects, have been briefly summarized in this work.

Keywords: low-temperature solid oxide fuel cell; low-temperature electrolyte; electrochemical performance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1280/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1280/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1280-:d:506107

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1280-:d:506107