Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification
Jonathan Roth,
Jayashree Chadalawada,
Rishee K. Jain and
Clayton Miller
Additional contact information
Jonathan Roth: Building and Urban Data Science (BUDS) Lab, National University of Singapore, Singapore 119007, Singapore
Jayashree Chadalawada: Building and Urban Data Science (BUDS) Lab, National University of Singapore, Singapore 119007, Singapore
Rishee K. Jain: Stanford Urban Informatics Lab, Civil, and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
Clayton Miller: Building and Urban Data Science (BUDS) Lab, National University of Singapore, Singapore 119007, Singapore
Energies, 2021, vol. 14, issue 5, 1-22
Abstract:
As new grid edge technologies emerge—such as rooftop solar panels, battery storage, and controllable water heaters—quantifying the uncertainties of building load forecasts is becoming more critical. The recent adoption of smart meter infrastructures provided new granular data streams, largely unavailable just ten years ago, that can be utilized to better forecast building-level demand. This paper uses Bayesian Structural Time Series for probabilistic load forecasting at the residential building level to capture uncertainties in forecasting. We use sub-hourly electrical submeter data from 120 residential apartments in Singapore that were part of a behavioral intervention study. The proposed model addresses several fundamental limitations through its flexibility to handle univariate and multivariate scenarios, perform feature selection, and include either static or dynamic effects, as well as its inherent applicability for measurement and verification. We highlight the benefits of this process in three main application areas: (1) Probabilistic Load Forecasting for Apartment-Level Hourly Loads; (2) Submeter Load Forecasting and Segmentation; (3) Measurement and Verification for Behavioral Demand Response. Results show the model achieves a similar performance to ARIMA, another popular time series model, when predicting individual apartment loads, and superior performance when predicting aggregate loads. Furthermore, we show that the model robustly captures uncertainties in the forecasts while providing interpretable results, indicating the importance of, for example, temperature data in its predictions. Finally, our estimates for a behavioral demand response program indicate that it achieved energy savings; however, the confidence interval provided by the probabilistic model is wide. Overall, this probabilistic forecasting model accurately measures uncertainties in forecasts and provides interpretable results that can support building managers and policymakers with the goal of reducing energy use.
Keywords: Bayesian probabilistic forecasting; measurement and verification; residential energy prediction; smart meters (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1481/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1481/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1481-:d:513031
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().