EconPapers    
Economics at your fingertips  
 

Experimental Validation of the Thermal Processes Modeling in a Solar Still

Ewelina Radomska, Lukasz Mika, Karol Sztekler and Wojciech Kalawa
Additional contact information
Ewelina Radomska: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland
Lukasz Mika: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland
Karol Sztekler: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland
Wojciech Kalawa: Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Science and Technology, Mickiewicza 30 St., 30-059 Krakow, Poland

Energies, 2021, vol. 14, issue 8, 1-22

Abstract: Passive solar distillation is cheap and energy-efficient technology but its main disadvantage is low productivity. Thus, there are many attempts to improve solar stills’ productivity, and one of them is changing the mass of the water. This paper presents the results of validation of the thermal processes modeling in a solar still (SS). In order to validate the model, the experimental studies were conducted in a laboratory to ensure uniform climatic conditions. The studies were carried out for 10 kg, 15 kg, and 20 kg of water under three different solar irradiance conditions. The results show that 10 kg and 20 kg of water ensure the highest and the lowest daily productivity, respectively, independently of solar irradiance. When the water mass is 10 kg, the solar still’s productivity is 800 mL/m 2 /day, 3732 mL/m 2 /day, and 9392 mL/m 2 /day for low, medium, and high solar irradiance, respectively. Additionally, it is found that reducing the water mass from 20 kg to 10 kg can improve solar still’s productivity by a maximum value of 21.6%, which is obtained for low solar irradiance. The proposed mathematical model allows predicting the performance of the SS. The results of the theoretical calculations are in good agreement with the results of the experiments. The minimum and maximum deviation between the actual and theoretical productivity of the SS is 1.1% and 8.3%, respectively.

Keywords: desalination; distillation; mathematical modeling; solar still (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/8/2321/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/8/2321/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:8:p:2321-:d:539611

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2321-:d:539611