Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review
Bernhard Faessler
Additional contact information
Bernhard Faessler: Faculty of Engineering and Science, University of Agder, Jon Lilletuns vei 9, 4879 Grimstad, Norway
Energies, 2021, vol. 14, issue 8, 1-19
Abstract:
The global demand for electricity is rising due to the increased electrification of multiple sectors of economic activity and an increased focus on sustainable consumption. Simultaneously, the share of cleaner electricity generated by transient, renewable sources such as wind and solar energy is increasing. This has made additional buffer capacities for electrical grids necessary. Battery energy storage systems have been investigated as storage solutions due to their responsiveness, efficiency, and scalability. Storage systems based on the second use of discarded electric vehicle batteries have been identified as cost-efficient and sustainable alternatives to first use battery storage systems. Large quantities of such batteries with a variety of capacities and chemistries are expected to be available in the future, as electric vehicles are more widely adopted. These batteries usually still possess about 80% of their initial capacity and can be used in storage solutions for high-energy as well as high-power applications, and even hybrid solutions encompassing both. There is, however, no holistic review of current research on this topic. This paper first identifies the potential applications for second use battery energy storage systems making use of decommissioned electric vehicle batteries and the resulting sustainability gains. Subsequently, it reviews ongoing research on second use battery energy storage systems within Europe and compares it to similar activities outside Europe. This review indicates that research in Europe focuses mostly on “behind-the-meter” applications such as minimising the export of self-generated electricity. Asian countries, especially China, use spent batteries for stationary as well as for mobile applications. In developing countries, off-grid applications dominate. Furthermore, the paper identifies economic, environmental, technological, and regulatory obstacles to the incorporation of repurposed batteries in second use battery energy storage systems and lists the developments needed to allow their future uptake. This review thus outlines the technological state-of-the-art and identifies areas of future research on second use battery energy storage systems.
Keywords: low-carbon society; stationary energy storage system; second use; hybrid storage; battery applications; trends; barriers; outlook (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/8/2335/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/8/2335/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:8:p:2335-:d:539836
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().