EconPapers    
Economics at your fingertips  
 

Short-Term Load Forecasting Using Encoder-Decoder WaveNet: Application to the French Grid

Fernando Dorado Rueda, Jaime Durán Suárez and Alejandro del Real Torres
Additional contact information
Fernando Dorado Rueda: IDENER, 41300 Seville, Spain
Jaime Durán Suárez: IDENER, 41300 Seville, Spain
Alejandro del Real Torres: Department of Systems and Automation, University of Seville, 41092 Seville, Spain

Energies, 2021, vol. 14, issue 9, 1-16

Abstract: The prediction of time series data applied to the energy sector (prediction of renewable energy production, forecasting prosumers’ consumption/generation, forecast of country-level consumption, etc.) has numerous useful applications. Nevertheless, the complexity and non-linear behaviour associated with such kind of energy systems hinder the development of accurate algorithms. In such a context, this paper investigates the use of a state-of-art deep learning architecture in order to perform precise load demand forecasting 24-h-ahead in the whole country of France using RTE data. To this end, the authors propose an encoder-decoder architecture inspired by WaveNet, a deep generative model initially designed by Google DeepMind for raw audio waveforms. WaveNet uses dilated causal convolutions and skip-connection to utilise long-term information. This kind of novel ML architecture presents different advantages regarding other statistical algorithms. On the one hand, the proposed deep learning model’s training process can be parallelized in GPUs, which is an advantage in terms of training times compared to recurrent networks. On the other hand, the model prevents degradations problems (explosions and vanishing gradients) due to the residual connections. In addition, this model can learn from an input sequence to produce a forecast sequence in a one-shot manner. For comparison purposes, a comparative analysis between the most performing state-of-art deep learning models and traditional statistical approaches is presented: Autoregressive-Integrated Moving Average (ARIMA), Long-Short-Term-Memory, Gated-Recurrent-Unit (GRU), Multi-Layer Perceptron (MLP), causal 1D-Convolutional Neural Networks (1D-CNN) and ConvLSTM (Encoder-Decoder). The values of the evaluation indicators reveal that WaveNet exhibits superior performance in both forecasting accuracy and robustness.

Keywords: time series forecasting; energy consumption forecasting; deep learning; machine learning; convolutional neural networks; artificial neural networks; causal convolutions; dilated convolutions; encoder-decoder (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/9/2524/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/9/2524/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:9:p:2524-:d:545124

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2524-:d:545124