EconPapers    
Economics at your fingertips  
 

A Quantitative Risk-Averse Model for Optimal Management of Multi-Source Standalone Microgrid with Demand Response and Pumped Hydro Storage

Yongqi Zhao and Jiajia Chen
Additional contact information
Yongqi Zhao: School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255049, China
Jiajia Chen: School of Electrical and Electronic Engineering, Shandong University of Technology, Zibo 255049, China

Energies, 2021, vol. 14, issue 9, 1-17

Abstract: High renewable energy integrated standalone microgrid requires greater ramping capabilities from other dispatchable resources to compensate for effects of the intermittent and variability of the renewable energy available in the system. To address this, a wind-solar-thermal-hydro-coupled multi-source standalone microgrid (WSTHcMSSM) considering demand response and pumped hydro storage is proposed to maximize the operating profit and get the optimal solution of the multi-source generation system by taking advantage of multi-resource complementarity. In WSTHcMSSM, we present a conditional value-at-credibility (CVaC)-based quantitative risk-averse model for uncertain wind and solar power by thoroughly examining the randomness and fuzziness characteristics. Additionally, the most severe issues caused by wind and solar power fluctuation happen during the peak load, and this paper proposes a load partitioning method to get the time-of-use (TOU) in demand response for peak load shaving. A case study is conducted for the validation of the proposed method. It is found from the study case that the CVaC can well evaluate the uncertainty in WSTHcMSSM with wind and solar integration. Additionally, the WSTHcMSSM can efficiently explore the potential flexibility in multi-source complementarity for promoting the penetration of renewable energy.

Keywords: conditional value-at-credibility; demand response; pumped hydro storage; risk evaluation; standalone microgrid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/9/2692/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/9/2692/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:9:p:2692-:d:550214

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2692-:d:550214