EconPapers    
Economics at your fingertips  
 

Multi-Step Ahead Short-Term Electricity Load Forecasting Using VMD-TCN and Error Correction Strategy

Fangze Zhou, Hui Zhou, Zhaoyan Li and Kai Zhao
Additional contact information
Fangze Zhou: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
Hui Zhou: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
Zhaoyan Li: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China
Kai Zhao: School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China

Energies, 2022, vol. 15, issue 15, 1-18

Abstract: The electricity load forecasting plays a pivotal role in the operation of power utility companies precise forecasting and is crucial to mitigate the challenges of supply and demand in the smart grid. More recently, the hybrid models combining signal decomposition and artificial neural networks have received popularity due to their applicability to reduce the difficulty of prediction. However, the commonly used decomposition algorithms and recurrent neural network-based models still confront some dilemmas such as boundary effects, time consumption, etc. Therefore, a hybrid prediction model combining variational mode decomposition (VMD), a temporal convolutional network (TCN), and an error correction strategy is proposed. To address the difficulty in determining the decomposition number and penalty factor for VMD decomposition, the idea of weighted permutation entropy is introduced. The decomposition hyperparameters are optimized by using a comprehensive indicator that takes account of the complexity and amplitude of the subsequences. Besides, a temporal convolutional network is adopted to carry out feature extraction and load prediction for each subsequence, with the primary forecasting results obtained by combining the prediction of each TCN model. In order to further improve the accuracy of prediction for the model, an error correction strategy is applied according to the prediction error of the train set. The Global Energy Competition 2014 dataset is employed to demonstrate the effectiveness and practicality of the proposed hybrid model. The experimental results show that the prediction performance of the proposed hybrid model outperforms the contrast models. The accuracy achieves 0.274%, 0.326%, and 0.405 for 6-steps, 12-steps, and 24 steps ahead forecasting, respectively, in terms of the mean absolute percentage error.

Keywords: short-term load forecasting; variational mode decomposition; weighted permutation entropy; temporal convolutional network; error correction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/15/5375/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/15/5375/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:15:p:5375-:d:871030

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5375-:d:871030