The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex
Danilo Arcentales-Bastidas,
Carla Silva and
Angel D. Ramirez
Additional contact information
Danilo Arcentales-Bastidas: Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
Carla Silva: Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
Angel D. Ramirez: Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
Energies, 2022, vol. 15, issue 15, 1-24
Abstract:
The present study compiles a life cycle inventory for Ecuadorian sugarcane-derived ethanol production to quantify its environmental performance and identify the life cycle stages that cause major impacts. The scope of this study encompasses a cradle-to-gate analysis that includes the agriculture, the milling, the distillation, and the co-generation of electricity. This assessment is modeled using the OpenLCA v1.10.3 software. Two functional units (FU) were established in this study: “1 ton of sugarcane at-the-farm-gate” for the agricultural stage and “1 L of ethanol at-the-plant-gate”. A hybrid attributional and consequential life cycle analysis (LCA) approach has been followed. Economic allocation (EA) and system expansion (SE) were used to take co-products into account in the milling and co-generation of electricity stages, respectively. The co-generation stage is analyzed in three different scenarios: (i) average mix displacement scenario where the surplus electricity produced in the co-generation stage is displaced; (ii) marginal technology displacement scenario where the marginal surplus electricity is displaced from the mix and (iii) no displacement scenario. The global warming potential (GWP) impact at the farm gate level was reported as 53.6 kg of carbon dioxide equivalent (kg CO 2 eq . ) per ton of sugarcane produced. The two main contributors of the agricultural stage correspond to N 2 O lixiviation and volatilization with 34% followed by the diesel used in agricultural machinery with 24%. The GWP for 1 L of ethanol produced was reported as 0.60 kg CO 2 eq . based on the average mix displacement scenario. No displacement scenario has a GWP impact of 0.84 kg CO 2 /liter of ethanol The distillation stage has the highest contribution to GWP impact with approximately 61% followed by the agricultural stage with 47%. The co-generation stage reports a contribution of ?8.4% due to the surplus electricity displacement. The scenarios where the system expansion method is applied have a lower GWP impact compared to the scenario where no surplus electricity is displaced. Regarding terrestrial acidification potential impact, 0.01528 kg of SO 2 eq . was reported at the ethanol production level especially due to the nitrogen and phosphorous content in the vinasse produced from the distillation process. The marine eutrophication impact for 1 L of ethanol produced was 0.00381 kg of N eq . due to the content of nitrogen contained in the vinasse and the use of nitrogenous fertilizers in the agricultural stage. Finally, to create more eco-friendly Ecuadorian sugarcane and ethanol industries, sustainable and less polluting processes should be sought to reduce the environmental burdens. Companies should apply industrial symbiosis and circular economy strategies to produce lesser environmental loads within the ethanol production chain. The sugarcane industrial sector should also promote the surplus electricity production in order to gain credits.
Keywords: OpenLCA; system expansion; industrial symbiosis; bagasse; waste-to-energy; valorization; biofuel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/15/5421/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/15/5421/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:15:p:5421-:d:872912
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().