EconPapers    
Economics at your fingertips  
 

Possibilities of Biogas Upgrading on a Bio-Waste Sorbent Derived from Anaerobic Sewage Sludge

Marcin Zieliński, Aleksandra Karczmarczyk, Marta Kisielewska and Marcin Dębowski ()
Additional contact information
Marcin Zieliński: Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
Aleksandra Karczmarczyk: Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
Marta Kisielewska: Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland
Marcin Dębowski: Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland

Energies, 2022, vol. 15, issue 17, 1-14

Abstract: The development of biogas upgrading technologies is now an essential issue in recovering fuel-grade methane. Nowadays, trends in biogas upgrading include investigations of low-cost and renewable materials as sorbents for biogas enrichment to produce biomethane. Therefore, in this work, wastewater anaerobic sludge stabilized with calcium oxide was used as the bio-waste sorbent to capture carbon dioxide from biogas, employing a fixed bed column. The biogas flow rate was the parameter considered for examining the breakthrough responses. It was observed that breakthrough time decreases with increasing biogas inflow rate from 570 ± 10 min at 5 mL/min to 120 ± 12 min at 35 mL/min. The maximum sorption capacity of 127.22 ± 1.5 mg CO 2 /g TS of sorbent was estimated at 15 mL/min. Biomethane concentration in biogas increased from 56.5 ± 1.7 v% in the raw biogas to 98.9 ± 0.2 v% with simultaneous low carbon dioxide content of 0.44 ± 0.2 v%. A strong positive correlation (R 2 = 0.9919) between the sorption capacity and the biogas flow rate was found in the range of biogas inflow rates between 5 mL/min and 15 mL/min. Moreover, the correlation analysis showed a strong negative relationship (R 2 = 0.9868) between breakthrough time and the mass of carbon dioxide removal, and the biogas flow rates ranged from 10 mL/min to 20 mL/min.

Keywords: biogas upgrading; biomethane; wastewater sludge; calcium oxide; fixed-bed sorption; bio-waste sorbent (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/17/6461/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/17/6461/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:17:p:6461-:d:906524

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6461-:d:906524