Subsurface Water Retention Technology Promotes Drought Stress Tolerance in Field-Grown Tomato
Soufiane Lahbouki,
Abdelilah Meddich,
Raja Ben-Laouane,
Abdelkader Outzourhit and
Luigi Pari ()
Additional contact information
Soufiane Lahbouki: Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
Abdelilah Meddich: Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
Raja Ben-Laouane: Center of Agrobiotechnology and Bioengineering, Research Unit Labelled CNRST (Centre AgroBiotech-URL-CNRST-05), “Physiology of Abiotic Stresses” Team, Cadi Ayyad University, Marrakech 40000, Morocco
Abdelkader Outzourhit: Laboratory of Nanomaterials for Energy and Environment Physics Department, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box 2390, Marrakech 40000, Morocco
Luigi Pari: CREA Research Centre for Engineering and Agro-Food Processing, Via della Pascolare, 16, Monterotondo, 00015 Rome, Italy
Energies, 2022, vol. 15, issue 18, 1-13
Abstract:
Agricultural activities depend heavily on irrigation in arid and semi-arid climates, which are one of the most water-limited areas, reducing agricultural productivity. As the climate changes, the lack of precipitation is expected to aggravate in these areas, requiring careful management of water use. Subsurface water retention technology (SWRT) may hold promise as a management tool to save water use and improve crop drought resistance. In this context, the effect of SWRT on tomato yield, growth, physiology, and biochemical characteristics, as well as soil characteristics under two regimes of water (100% field capacity (FC) and 50% FC) in open field conditions, was investigated. The results here suggest that drought affected tomato performance. Nevertheless, SWRT application significantly increased tomato yield (38%), chlorophyll fluorescence (3%), gas exchange (39%), and chlorophyll total content (49%), as well as soil fertility characteristics, with significant increases in organic matter (23%) and assimilable phosphorus contents (25%) compared with the control. Furthermore, it resulted in a significant reduction in enzymatic antioxidant activities and polyphenol and significant improvement in fruit quality by increasing protein content. This technique should be used as a valuable strategy to save irrigation water and mitigate the negative effects of water deficiency on tomato plants in arid and semi-arid regions.
Keywords: biochemical responses; climate change; physiological responses; yield (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/18/6807/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/18/6807/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:18:p:6807-:d:917712
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().