EconPapers    
Economics at your fingertips  
 

Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model

Mingping Liu, Xihao Sun, Qingnian Wang and Suhui Deng ()
Additional contact information
Mingping Liu: School of Information Engineering, Nanchang University, Nanchang 330031, China
Xihao Sun: School of Information Engineering, Nanchang University, Nanchang 330031, China
Qingnian Wang: School of Information Engineering, Nanchang University, Nanchang 330031, China
Suhui Deng: School of Information Engineering, Nanchang University, Nanchang 330031, China

Energies, 2022, vol. 15, issue 19, 1-22

Abstract: Short-term load forecasting (STLF) has a significant role in reliable operation and efficient scheduling of power systems. However, it is still a major challenge to accurately predict power load due to social and natural factors, such as temperature, humidity, holidays and weekends, etc. Therefore, it is very important for the efficient feature selection and extraction of input data to improve the accuracy of STLF. In this paper, a novel hybrid model based on empirical mode decomposition (EMD), a one-dimensional convolutional neural network (1D-CNN), a temporal convolutional network (TCN), a self-attention mechanism (SAM), and a long short-term memory network (LSTM) is proposed to fully decompose the input data and mine the in-depth features to improve the accuracy of load forecasting. Firstly, the original load sequence was decomposed into a number of sub-series by the EMD, and the Pearson correlation coefficient method (PCC) was applied for analyzing the correlation between the sub-series with the original load data. Secondly, to achieve the relationships between load series and external factors during an hour scale and the correlations among these data points, a strategy based on the 1D-CNN and TCN is proposed to comprehensively refine the feature extraction. The SAM was introduced to further enhance the key feature information. Finally, the feature matrix was fed into the long short-term memory (LSTM) for STLF. According to experimental results employing the North American New England Control Area (ISO-NE-CA) dataset, the proposed model is more accurate than 1D-CNN, LSTM, TCN, 1D-CNN–LSTM, and TCN–LSTM models. The proposed model outperforms the 1D-CNN, LSTM, TCN, 1D-CNN–LSTM, and TCN–LSTM by 21.88%, 51.62%, 36.44%, 42.75%, 16.67% and 40.48%, respectively, in terms of the mean absolute percentage error.

Keywords: short-term load forecasting; empirical model decomposition; one-dimensional convolutional neural network; temporal convolutional network; self-attention mechanism; long short-term memory network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/19/7170/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/19/7170/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:19:p:7170-:d:928896

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7170-:d:928896