EconPapers    
Economics at your fingertips  
 

Importance of Feedstock in a Small-Scale Agricultural Biogas Plant

Robert Czubaszek (), Agnieszka Wysocka-Czubaszek and Piotr Banaszuk
Additional contact information
Robert Czubaszek: Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland
Agnieszka Wysocka-Czubaszek: Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland
Piotr Banaszuk: Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A Str., 15-351 Bialystok, Poland

Energies, 2022, vol. 15, issue 20, 1-19

Abstract: Although no legal sustainability criteria have been formulated for electricity and heat production from biogas, the sustainability and profitability of large-scale biogas plants which use mainly energy crops is now questioned. Small (farm-size) biogas plants characterized by CHP electrical output in the range between 15 kW el and 99 kW el , operating on agricultural wastes and by-products, seem more suitable; however, the variety of feedstock may be crucial in the proper design and operation of such family biogas plants. This paper aims to present the problems that occurred in small agricultural biogas plants fed with sheep manure (SM), horse manure (HM), and grass-clover silage (GCS). This paper also focuses on analyzing the energy balance and carbon dioxide (CO 2 ) emissions related to four technological solutions (Scenarios 1–4) based on various feedstocks, grinding and feeding systems, and wet/dry fermentation. The biogas plant was originally based on dry fermentation with an organic loading rate ~10.4 kg VS ·m −3 ·d −1 , a hydraulic retention time of 16 days, and temperature of 45 °C in the fermentation chamber. The material was shredded and mixed in a mixing device, then the mixture of manures and silage was introduced to the horizontal fermentation chamber through a system of screw feeders. The biogas and the digestate were collected in a reinforced concrete tank. The biogas was sent to the CHP unit of an installed electrical power of 37 kW el , used to produce electricity and recover the heat generated in this process. Scenario 1 is based on the design assumptions used for the biogas plant construction and start-up phase. Scenario 2 includes a new feeding and grinding system, in Scenario 3 the feedstock is limited to SM and HM and wet fermentation is introduced. In Scenario 4, a dry fermentation of SM, HM, and maize silage (MS) is assumed. Avoided CO 2 emissions through electricity and heat production from biogas were the highest in the case of Scenarios 1 and 4 (262,764 kg CO 2 ·y −1 and 240,992 kg CO 2 ·y −1 ) due to high biogas production, and were the lowest in Scenario 3 (7,481,977 kg CO 2 ·y −1 ) because of the low specific methane yield (SMY) of SM and HM. Nevertheless, in all scenarios, except Scenario 3, CO 2 emissions from feedstock preparation and biogas plant operation are much lower than that which can be avoided by replacing the fossil fuel energy for the electricity and heat produced from biogas. Our observations show that a small agricultural biogas plant can be an effective energy source, and can contribute to reducing CO 2 emissions only if the appropriate technological assumptions are adopted, and the entire installation is designed correctly.

Keywords: small-scale biogas plant; feedstock; manure; CO 2 emissions; energy balance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/20/7749/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/20/7749/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:20:p:7749-:d:947791

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7749-:d:947791