EconPapers    
Economics at your fingertips  
 

Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain

Arsenio Barbón, Luis Bayón (), Guzmán Díaz and Carlos A. Silva
Additional contact information
Arsenio Barbón: Department of Electrical Engineering, University of Oviedo, 33003 Oviedo, Spain
Luis Bayón: Department of Mathematics, University of Oviedo, 33003 Oviedo, Spain
Guzmán Díaz: Department of Electrical Engineering, University of Oviedo, 33003 Oviedo, Spain
Carlos A. Silva: Center for Innovation, Technology and Policy Research—IN+, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisboa, Portugal

Energies, 2022, vol. 15, issue 21, 1-20

Abstract: Rooftop photovoltaic generation can help cities become key players in the transition to clean energy. The optimal solar photovoltaic production on rooftops depends on two angles: tilt angle and azimuth angle. It is accepted in all studies that the ideal orientation of photovoltaic modules is toward the south (north) in the northern hemisphere (south). In contrast, the determination of the optimum tilt angle is more complex, and there are different equations for its calculation. Most of these equations do not take albedo into account. In this work, 47 Spanish province capitals representing the most populated cities have been studied with different equations for the calculation of the optimum annual tilt angle (Technical report by the Spanish Institute for the Diversification and Saving of Energy (IDAE), Lorenzo’s and Jacobson’s equation) and different types of albedo. Accounting for the geographical and the meteorological conditions of the cities, we analyzed the optimum tilt angle through a Mathematica© optimization code. The influence that different variables have on optimum tilt angle has been quantified by means of the term relative energy harvested. The use of the equations as a function of latitude increases the annual relative energy harvested by increasing the albedo. When the albedo is 0.2, the annual relative energy harvested is very similar in all equations. Comparing to the method that maximizes the total irradiation incident on a tilted surface, the minimum and maximum value of the percentage of relative energy harvested per year were 0.01 and 2.50% for the IDAE guideline, 0.00 and 2.38% for Lorenzo’s equation, 0.00 and 2.46% for Jacobson’s equation. A simplified polynomial regression model to estimate optimum tilt angle as a function of latitude, altitude and albedo has been proposed as well.

Keywords: photovoltaic power systems; optimum tilt angle; albedo; relative energy harvested (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/21/7905/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/21/7905/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:21:p:7905-:d:952328

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:21:p:7905-:d:952328