Simulation and Techno-Economic Assessment of Hydrogen Production from Biomass Gasification-Based Processes: A Review
Jhulimar Castro,
Jonathan Leaver and
Shusheng Pang ()
Additional contact information
Jhulimar Castro: Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
Jonathan Leaver: Unitec Institute of Technology, Auckland 1025, New Zealand
Shusheng Pang: Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
Energies, 2022, vol. 15, issue 22, 1-37
Abstract:
The development of low-carbon fuels from renewable resources is a key measure to reduce carbon dioxide emissions and mitigate climate change. Biomass gasification with subsequent gas processing and purification is a promising route to produce low-carbon hydrogen. In the past decade, simulation-based modelling using Aspen Plus software has supported the investigation of future potential industrial applications of this pathway. This article aims to provide a review of the modelling and economic assessment of woody biomass gasification-based hydrogen production, with focus on the evaluation of the model accuracy in predicting producer gas composition in comparison with experimental data depending on the approach implemented. The assessment of comprehensive models, which integrate biomass gasification with gas processing and purification, highlights how downstream gas processing could improve the quality of the syngas and, thus, the hydrogen yield. The information in this article provides an overview of the current practices, challenges, and opportunities for future research, particularly for the development of a comprehensive pathway for hydrogen production based on biomass gasification. Moreover, this review includes a techno-economic assessment of biomass to hydrogen processes, which will be useful for implementation at industrial-scale.
Keywords: biomass gasification; hydrogen production; economic feasibility; environmental benefits; mathematical modelling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8455/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8455/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8455-:d:970719
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().