EconPapers    
Economics at your fingertips  
 

Optimization and Techno-Economic Appraisal of Parabolic Trough Solar Power Plant under Different Scenarios: A Case Study of Morocco

Hanane Ait Lahoussine Ouali, Ahmed Alami Merrouni, Shahariar Chowdhury, Kuaanan Techato, Sittiporn Channumsin and Nasim Ullah
Additional contact information
Hanane Ait Lahoussine Ouali: Materials Science, New Energies & Application Research Group, LPTPME Laboratory, Department of Physics, Faculty of Science, University Mohammed First, Oujda 60000, Morocco
Ahmed Alami Merrouni: Materials Science, New Energies & Application Research Group, LPTPME Laboratory, Department of Physics, Faculty of Science, University Mohammed First, Oujda 60000, Morocco
Shahariar Chowdhury: Faculties Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
Kuaanan Techato: Faculties Environmental Management, Prince of Songkla University, Songkhla 90110, Thailand
Sittiporn Channumsin: Geo-Informatics and Space Technology Development Agency (GISTDA), Chonburi 20230, Thailand
Nasim Ullah: Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Energies, 2022, vol. 15, issue 22, 1-20

Abstract: Morocco is a country with a lack of fossil fuel resources and an increasing demand for energy. This inspired the country to increase the use of renewable energy in the energy mix. The objective of this study was to conduct an optimization and techno-economic appraisal of a concentrated solar power plant (CSP) using different scenarios that took Ouarzazate city in the south of Morocco as a case study. To achieve this, several parameters were assessed, including the impacts of solar collector assemblies (SCAs), receiver types, heat transfer fluids, cooling systems, solar multiples, and thermal storage hours, with regard to the profitability of the CSP plant. Then, performance and sensitivity analyses were conducted to select the best integration scenarios based on different economic indicators, including levelized cost of electricity (LCOE) and net present value (NPV). The findings revealed that the use of the Luz LS-3 as the collector/SCA, Solel UVAC 3 as receiver, and Dowtherm Q as heat transfer fluid exhibited the highest performance in terms of the annual energy production yield and capacity factor, as well as the lowest real and nominal LCOEs with a wet cooled condenser. Furthermore, the LCOE is extremely sensitive to changes in the number of hours of storage and the solar multiple, and the optimal real and nominal LCOEs are determined by a highly specific combination of the solar multiple and the number of hours of storage. As a consequence, the maximum and minimum net electricity outputs for the best configuration of the Parabolic Trough Collector (PTC) plant were 24.6 GWh and 7.4 GWh in May and December, respectively. Likewise, the capacity factor and the gross-to-net conversion factor for the optimized plant were found to be 47.9%, and 93.5%, respectively. Concerning the economic study, the expected energy cost was 0.1303 USD per kWh and the NPV value for Ouarzazate city was positive (more than USD 20 million), which indicates that the studied PTC plant was estimated to be financially and economically feasible. The results of this analysis are highly significant and may persuade decision makers, financiers, and solar energy industry players to increase their investments in the Kingdom of Morocco.

Keywords: parabolic trough collector; levelized cost of electricity; net present value; Morocco (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8485/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8485/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8485-:d:971856

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8485-:d:971856