Advances in Indoor Cooking Using Solar Energy with Phase Change Material Storage Systems
Selvaraj Balachandran and
Jose Swaminathan ()
Additional contact information
Selvaraj Balachandran: School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
Jose Swaminathan: School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
Energies, 2022, vol. 15, issue 22, 1-32
Abstract:
One of the key areas of the UN’s sustainable development goals is growing affordable and clean energy. Utilizing solar energy that is now accessible will significantly lessen the demand for fossil fuels. Around the world, cooking is a crucial activity for homes and uses a lot of non-renewable energy. Uncontrolled firewood usage results in deforestation, whereas using biomass-related fuels in inefficient stoves can result in smoke emanating from the kitchen and associated health issues. The benefits of solar cooking include reducing smoke-related problems and saving on fossil fuels and firewood. Applying thermal storage systems in cooking helps households have all-day cooking. This review article presents the research and development of a solar cooking system that transfers solar energy into the kitchen and integrates with the thermal energy storage system, finding the factors affecting indoor solar cooking performance. Adding portable cooking utensils helps in improved solar indoor cooking. Multiple phase change materials arranged in cascaded to store thermal energy helps in quick heat transfer rate, thus enabling better and faster cooking. A novel indoor solar cooker with an innovative arrangement of evacuated tube-based compound concentrating parabolic (CPC) collectors with a cascaded latent heat thermal energy storage system is proposed and needs to be tested under actual meteorological conditions.
Keywords: solar cooker; solar concentrating cooker; thermal energy storage system; phase change materials; indirect solar cooker; indoor solar cooking system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/22/8775/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/22/8775/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:22:p:8775-:d:979857
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().