Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia
Carlo James Cunanan,
Carlos Andrés Elorza Casas,
Mitchell Yorke,
Michael Fowler and
Xiao-Yu Wu ()
Additional contact information
Carlo James Cunanan: Greener Production Group, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Carlos Andrés Elorza Casas: Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Mitchell Yorke: Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Michael Fowler: Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Xiao-Yu Wu: Greener Production Group, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
Energies, 2022, vol. 15, issue 24, 1-23
Abstract:
Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage, transmission and distribution, and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day, which will use an 8 MW offshore turbine system off the coast of Nova Scotia, Canada as the main power source. The P2A system consists of a reverse osmosis system, a proton exchange membrane (PEM) electrolyser, a hydrogen storage tank, a nitrogen generator, a set of compressors and heat exchangers, an autothermal Haber-Bosch reactor, and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day, and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios, which is larger than the traditional fossil-fuel based ammonia production, when using the grid in provinces like Nova Scotia, even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne −1 for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system, reducing the reliance on the electricity grid, increasing service life, and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive.
Keywords: power-to-ammonia; hydrogen; offshore wind; renewable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/24/9558/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/24/9558/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:24:p:9558-:d:1005701
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().