Modelling of Solar PV under Varying Condition with an Improved Incremental Conductance and Integral Regulator
Akinyemi Ayodeji Stephen,
Kabeya Musasa and
Innocent Ewean Davidson
Additional contact information
Akinyemi Ayodeji Stephen: Department of Electrical Power Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa
Kabeya Musasa: Department of Electrical Power Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa
Innocent Ewean Davidson: Department of Electrical Power Engineering, Faculty of Engineering and the Built Environment, Durban University of Technology, Durban 4000, South Africa
Energies, 2022, vol. 15, issue 7, 1-22
Abstract:
The introduction of solar photovoltaic (PV) systems would provide electricity accessibility to rural areas that are far from or have no access to the grid system. Various countries are planning to reduce their emissions from fossil fuel, due to its negative effects, by substituting with renewable energy resources. The use of solar PV systems is expanding globally because of growing energy demands and depleting fossil fuel reserves. Grid integration of the solar system is expected to increase further in the near future. However, the power output of solar PV systems is inherently intermittent, and depends on the irradiance and the temperature operation of the solar cell, resulting in a wide range of defects. Hence, it is vital to extract peak power from the solar panel in all conditions to provide constant power to the load. This paper presents a tracking control method of the peak output power of a solar PV system connected to a DC-DC boost converter using an improved incremental conductance and integral regulator (IC + IR). The research was carried out because the solar PV output is dependent on environmental parameters, such as solar insolation and temperature. Therefore, it is pertinent to forecast the peak power point in outdoor conditions and to operate at that point, so that solar PV can produce the highest output each time it is used. A peak power point strategy that maximizes the output of a solar PV array is proposed. This method establishes the maximum output operation point under the effects of the solar insolation and the module temperature. An automatic converter restoration scheme with block/de-block signal control is proposed to protect the converters from the higher phase current, total capacitor voltage deviation, grid disturbance, and fault current. The proposed scheme also tracks the peak power point ( PPP ) of the solar array with stable output voltage under varying operating conditions. It reduces the error signal and ripples at the PPP during instantaneous and incremental conductance to zero. In addition, it controls the solar PV system under constantly changing climatic conditions, and thus improves the system efficiency.
Keywords: solar photovoltaic system; peak power point tracking; incremental conductance; converter restoration; boost converter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2405/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2405/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2405-:d:779139
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().