Measurement of the Green Façade Prototype in a Climate Chamber: Impact of Watering Regime on the Surface Temperatures
Peter Juras and
Pavol Durica
Additional contact information
Peter Juras: Department of Building Engineering and Urban Planning, Faculty of Civil Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
Pavol Durica: Department of Building Engineering and Urban Planning, Faculty of Civil Engineering, University of Zilina, Univerzitna 8215/1, 010 26 Zilina, Slovakia
Energies, 2022, vol. 15, issue 7, 1-14
Abstract:
Green façades with an active water regime and the water flowing through the substrate itself are not common. This system reduces the temperatures and incorporates the evapotranspiration, which could be more effective than by the regular green façades. The use of a double-skin façade with a ventilated air cavity can reduce the heat load, but the evapotranspiration can reduce it even more with additional benefits. Green façades could also serve as a key element for reducing the surface temperatures of the insulated metal panels (IMP), which are mostly used as a façade system for production facilities or factories. In this paper, a prototype of a double-skin façade, which consisted of vegetation board from recycled materials and IMP, is tested in a climate chamber to evaluate the function and benefits of such a combination. The outdoor skin is made from board, the surface of which is covered by the rooted succulent plants. Measurement results are represented as a direct comparison of single sunny day surface temperatures with and without a double-skin (green) façade. The use of the green façade reduces the indoor surface temperature of IMP by 2.8 °C in this measurement. The use of water circulation through the outdoor skin reduces the temperature of the vegetation board by 28 °C. This could have a great impact on the microclimate around the façade. Because of the controlled environment and ventilation system in a climate chamber, it is not possible to investigate the airflow and solar chimney effect within the ventilated cavity. In addition, it is complicated to show the potential of microclimate change caused by the wet vegetation surface. For the mentioned reasons, the need to carry out “in situ” tests on a model wall under the real conditions was indicated.
Keywords: vegetation; air cavity; overheating; experimental; recycling; irrigation; evapotranspiration (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/15/7/2459/pdf (application/pdf)
https://www.mdpi.com/1996-1073/15/7/2459/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:15:y:2022:i:7:p:2459-:d:780742
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().