EconPapers    
Economics at your fingertips  
 

A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling

Oleksandr Castello () and Marina Resta
Additional contact information
Oleksandr Castello: Department of Economics and Business Studies, School of Social Sciences, University of Genoa, 16126 Genoa, Italy
Marina Resta: Department of Economics and Business Studies, School of Social Sciences, University of Genoa, 16126 Genoa, Italy

Energies, 2023, vol. 16, issue 12, 1-22

Abstract: This work studies the term structure dynamics in the natural gas futures market, focusing on the Dutch Title Transfer Facility (TTF) daily futures prices. At first, using the whole dataset, we compared the in-sample fitting performance of three models: the four-factor dynamic Nelson–Siegel–Svensson (4F-DNSS) model, the five-factor dynamic De Rezende–Ferreira (5F-DRF) model, and the B-spline model. Our findings suggest that B-spline is the method that achieves the best in-line fitting results. Then, we turned our attention to forecasting, using data from 20 January 2011 to 13 May 2022 as the training set and the remaining data, from 16 May to 13 June 2022, for day-ahead predictions. In this second part of the work we combined the above mentioned models (4F-DNSS, 5F-DRF and B-spline) with a Nonlinear Autoregressive Neural Network (NAR-NN), asking the NAR-NN to provide parameter tuning. All the models provided accurate out-of-sample prediction; nevertheless, based on extensive statistical tests, we conclude that, as in the previous case, B-spline (combined with an NAR-NN) ensured the best out-of-sample prediction.

Keywords: natural gas; futures prices term structure; Nelson–Siegel–Svensson model; De Rezende–Ferreira model; B-spline; artificial neural networks (ANN); Nonlinear Autoregressive Neural Networks (NAR-NNs) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/12/4746/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/12/4746/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:12:p:4746-:d:1172227

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4746-:d:1172227