EconPapers    
Economics at your fingertips  
 

Reduction in Fuel Consumption in Biomass-Fired Power Plant Using Hybrid Drying System

Somchart Chantasiriwan (somchart@engr.tu.ac.th)
Additional contact information
Somchart Chantasiriwan: Faculty of Engineering, Thammasat School of Engineering, Thammasat University, Pathum Thani 12120, Thailand

Energies, 2023, vol. 16, issue 17, 1-14

Abstract: Fuels used in biomass power plants usually have high moisture contents. Two methods of fuel drying that have been proposed are steam drying and flue gas drying. Steam drying requires extracted steam as its energy source, whereas flue gas drying requires flue gas leaving the boiler as its energy source. Previous works have mostly been concerned with the integration of either dryer in a power plant. There have been a few investigations on the integration of both dryers. This paper proposes a novel hybrid drying system that uses a steam dryer to dry a portion of the fuel. Exhaust vapor from the steam dryer is then used for the heating of combustion air, which increases the flue gas temperature. The higher flue gas temperature increases the potential of the flue gas dryer, which is used to dry another portion of the fuel. It is shown that the hybrid drying system is capable of reducing fuel consumption to 7.76% in a 50 MW power plant. Furthermore, the integration of hybrid drying is shown to be economically justified because the simple payback period is 4.28 years.

Keywords: thermodynamics; waste heat; regeneration; flue gas dryer; steam dryer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/17/6225/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/17/6225/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:17:p:6225-:d:1226421

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager (indexing@mdpi.com).

 
Page updated 2024-12-28
Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6225-:d:1226421