EconPapers    
Economics at your fingertips  
 

Fractal Characteristics of the Low-Gas Permeability Area of a Fully Mechanized Up-Dip Working Face under Different Dip Angles of Rock Strata

Shugang Li, Lidong Liu, Pengxiang Zhao (), Yongyong Jia and Haifei Lin
Additional contact information
Shugang Li: College of Safety Science and Engineering, Xi’an University of Science & Technology, Xi’an 710054, China
Lidong Liu: College of Safety Science and Engineering, Xi’an University of Science & Technology, Xi’an 710054, China
Pengxiang Zhao: College of Safety Science and Engineering, Xi’an University of Science & Technology, Xi’an 710054, China
Yongyong Jia: Xinjiang Uygur Autonomous Region Coal Science Research Institute, Urumqi 830091, China
Haifei Lin: College of Safety Science and Engineering, Xi’an University of Science & Technology, Xi’an 710054, China

Energies, 2023, vol. 16, issue 20, 1-19

Abstract: The low-gas permeability area of a fully mechanized up-dip working face was quantitatively studied using a physical similarity simulation test and theoretical analysis under varying dip angles of rock strata. Based on the theory of fractal geometry, this study obtained the fractal dimensions of the low-gas permeability area, the boundary area of the low-gas permeability region, and various layer areas of the low-gas permeability area by increasing the dip angle of rock strata. The findings reveal that the goaf’s high penetration area moved from a symmetrical shape to an asymmetrical one as the dip angle of rock strata increased. The high penetration area on the open-off cut side is notably larger than that on the working face side, due to the effects of advancement at the working face. In the goaf, the lateral length of the cavity decreases as the rock strata’s dip angle increases, while the longitudinal width expands and then contracts until it vanishes because of sliding. In the goaf, the lateral length of the cavity decreases as the rock strata’s dip angle increases, while the longitudinal width expands and then contracts until it vanishes because of sliding. In the goaf, the lateral length of the cavity decreases as the rock strata’s dip angle increases, while the longitudinal width expands and then contracts until it vanishes because of sliding. Moreover, the low-gas permeability area has a larger fractal dimension. The fractal dimension of the area with low gas permeability steadily decreased as periodic weighting emerged, ultimately reaching values of 1.24, 1.27, and 1.34. Moreover, the area’s fractal dimension was greater on the open-off cut side in comparison to the working face side. As the distance from the rock strata floor decreased, the fractal dimension of the area with low gas permeability increased. According to the gradient evolution law, the low-gas permeability area may be divided from bottom to top into three areas: strongly disturbed, moderately disturbed, and lowly disturbed. Based on the theory of mining fissure elliptic paraboloid zones and experimental findings, a mathematical model has been developed to analyze the fractal characteristics of low-gas permeability areas that are influenced by the rock strata’s dip angle. Finally, this study established a dependable theoretical foundation for precisely examining the development of cracks in the area of low gas permeability and identifying the storage and transportation region of pressure relief gas, which is affected by various dip angles of rock strata. It also offered assistance in constructing a precise gas extraction mechanism for pressure relief.

Keywords: low-gas permeability area; up-dip; dip angle of rock strata; fractal dimension; mining fissure elliptic paraboloid zone (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/20/7055/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/20/7055/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:20:p:7055-:d:1258137

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7055-:d:1258137