Absorption-Enhanced Methanol Steam Reforming for Low-Temperature Hydrogen Production with Carbon Capture
Xiao Li,
Lingzhi Yang and
Yong Hao ()
Additional contact information
Xiao Li: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Lingzhi Yang: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Yong Hao: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Energies, 2023, vol. 16, issue 20, 1-16
Abstract:
Methanol is a prospective hydrogen storage medium that holds the potential to address the challenges of hydrogen storage and transportation. However, hydrogen production via methanol steam reforming faces several key obstacles, including high reaction temperature (e.g., 250–300 °C) and low methanol conversion (at <200 °C), while the purification procedure of hydrogen is commonly required to obtain high-purity H 2 . A novel method of H 2 absorption-enhanced steam reforming of methanol is proposed to overcome the challenges mentioned above. The method involves the absorption and separation of H 2 using an absorbent to facilitate the forward shift of the reaction equilibrium and enhance reaction performance. A thermodynamic analysis using the equilibrium constant method presents that the separation of H 2 can improve the methanol conversion rate and the total H 2 yield. The feasibility of the method is validated through experiments in a fixed-bed reactor (4 mm diameter, 194 mm length) under the conditions of 200 °C and 1 bar. In the experiments, 1 g of bulk catalyst (CuO/ZnO/Al 2 O 3 ) and 150 g of bulk hydrogen absorbent (Aluminum-doped lanthanum penta-nickel alloy, LaNi 4.3 Al 0.7 alloy) are sequentially loaded into the reactor. As a proof of concept, a CO 2 concentration of 84.10% is obtained in the reaction step of the first cycle, and a gas stream with an H 2 concentration of 81.66% is obtained in the corresponding regeneration step. A plug flow reactor model considering the kinetics is developed to analyze the effects of the number of cycles and H 2 separation ratio on the enhancement performance. The method indicates a high potential for commercialization given its low reaction temperature, high-purity H 2 , and membrane-free design.
Keywords: hydrogen; methanol; absorption-enhanced reforming; CO 2 capture; low temperature (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/16/20/7134/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/20/7134/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:20:p:7134-:d:1262269
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().