EconPapers    
Economics at your fingertips  
 

Critical Comparison of Li-Ion Aging Models for Second Life Battery Applications

Sai Vinayak Ganesh and Matilde D’Arpino ()
Additional contact information
Sai Vinayak Ganesh: Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43214, USA
Matilde D’Arpino: Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43214, USA

Energies, 2023, vol. 16, issue 7, 1-23

Abstract: Lithium-ion batteries (LIBs) from electrified vehicles (EVs) that have reached the automotive end of life (EoL) may provide a low-cost, highly available energy storage solution for grid-connected systems, such as peak shaving and ancillary services. There are several issues related to the integration of second life batteries (SLBs) in power systems, such as the variability of the pack design and cell chemistry, in-field assessments of the state of health (SoH), and estimations of the expected lifetimes of SLBs in different power system applications. Model-based approaches are commonly used in the automotive industry for estimating/predicting the capacity and power fade trajectories of LIBs during their life. However, a large variety of models are available with different fidelities, complexities, and computational costs. The accuracy of these estimations is critical for the derivation of business models for SLB applications. This paper presents a qualitative and quantitative assessment of the performance of two well-accepted, state-of-the-art aging models, initially developed for automotive applications and here applied to different SLB applications to predict both the capacity and power fade. These models are evaluated with respect to several performance metrics, such as fidelity of estimation and capability of extrapolation outside the calibration data range. The considered models are classified as semi-empirical physics-based and empirical models, respectively. Three different SLB power profiles, bulk energy for DC fast charge stations and two frequency regulation profiles, are considered, corresponding to different ranges of the SoC, C-rates, and battery temperatures, with the aim of exciting different aging mechanisms. The numerical results provide insight for the selection of aging models for SLB applications based on their performances and limitations.

Keywords: lithium-ion batteries; second life automotive batteries; aging models; DC fast charging; ancillary services (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/16/7/3023/pdf (application/pdf)
https://www.mdpi.com/1996-1073/16/7/3023/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:16:y:2023:i:7:p:3023-:d:1107609

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3023-:d:1107609